

D-003-001616

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

April / May - 2015

Mathematics: BSMT-601(A)

(Graph Theory & Complex Analysis - II)

Faculty Code : 003 Subject Code : 001616

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (i) All questions are compulsory.

(ii) Answer all MCQ in answerbook only.

1 Attempt all M.C.Q.:

20

- (1) An isolated vertex in a graph G has degree
 - (A) 1

(B) 0

(C) 2

- (D) None of these
- (2) The maximum number of edges in a simple graph with 4 vertices is
 - (A) 3

(B) 6

(C) 5

- (D) None of these
- (3) The total number of edges in a complete graph with n vertices is
 - (A) $\frac{n(n+1)}{2}$
- (B) $\frac{n(n-1)}{2}$
- (C) $\frac{n^2(n+1)}{2}$
- (D) None of these
- (4) The number of vertices in a binary tree is always
 - (A) zero

(B) odd

(C) even

(D) None of these

(5)	What is the chromatic number of complete graph wit vertices ?			n of complete graph with n
			(D)	m ± 1
	` '	n-1	(B)	None of these
	(C)	\mathcal{H}	(D)	None of these
(6)	Nullity of a connected graph with n vertices and e edges			
	(A)	e+n-1	(B)	e+n+1
	(C)	e-n+1	(D)	None of these
(7)	Every tree with two or more vertices is			
	(A)	1-chromatic	(B)	3-chromatic
	(C)	2-chromatic	(D)	None of these
(8)	The rank of an incidence matrix of a connected graph G with			
		ertices is		
	(A)		(B)	2
	(C)	3	(D)	4
(9)	Regions of a connected planar graph with 4 vertices and 6 edges is			
	(A)	1	(B)	2
	(C)	3	(D)	4
(10)	The number of pendant vertices in any binary tree with 23 vertices are			
	(A)		(B)	13
	` '		`_ :	12
	(C)	14	(D)	12
(11)	The	sum function of the	e series	$\sum \frac{z^n}{n!}$ is
				•••
	` ′	Sine function	` ′	Cosine function
	(0)	Logarithmic function	и (D)	Exponential function
(12)) Radius of convergence of infinite series $\sum \left(1 + \frac{1}{n}\right)^{n^2} Z^n$ is			
	(A)		(B)	∞
	(C)	ρ	(D)	<u>1</u>
				_
D-003-001	1616	1	2	[Contd

- (13) The image of circle |z-1|=1 in the complex plane under the mapping $w = u + iv = \frac{1}{z}$ is
 - (A) $u = \frac{1}{2}$
- (B) $v = \frac{1}{2}$
- (C) |w-1|=1
- (D) $u^2 + v^2 = 1$
- (14) The region |z| > 1 represent
 - (A) exterior of unit disk (B) closed unit disk
 - (C) open unit disk
- (D) None of these
- (15) The fixed point of the mapping $w = \frac{3iz+13}{z-3i}$ are
 - (A) $3i \pm 2$

(B) $3\pm 2i$

(C) $2\pm 3i$

- (D) $-2 \pm 3i$
- (16) A pole of order of $f(z) = \frac{1 e^{2z}}{z^3}$ at z = 0 is
 - $(A) \quad 2$

(C) 0

- (D) None of these
- (17) The residue of a function can be evaluated only if the pole is an isolated singularity
 - (A) true

- (B) false
- (C) partially false
- (D) None of these
- (18) $\operatorname{Re} s \left(\tan z, \frac{\pi}{2} \right)$ is
 - (A) 1

(B) -1

(C) 0

- (D) None of these
- (19) Residue of f(z) at a simple pole z=a is
 - (A) $\lim_{z \to a} z f(z)$
- (B) $\lim_{z \to a} \frac{f(z)}{z a}$
- (C) $\lim_{z \to a} (z a) f(z)$ (D) $\lim_{z \to a} \frac{z a}{f(z)}$

(20) To evaluate the integral of the type $\int_{0}^{2\pi} \phi(\cos\theta, \sin\theta) d\theta$

the contour used is

- (A) any circle
- (B) semicircle

(C) rectangle

- (D) unit circle
- 2 (a) Attempt any three:

6

- (i) Define: Finite graph, Isolated vertex.
- (ii) In complete graph k_n the number of edges are 300 then obtain the number of vertices.
- (iii) Define: Path matrix.
- (iv) Obtain Rank and nullity for complete graph.
- (v) Prove that a binary tree with n vertices has $\frac{n+1}{2}$ pendent vertices.
- (vi) If G is a simple connected regular graph with e edges and f regions then prove that $e \ge \frac{3}{2}f$.
- (b) Attempt any three:

9

- (1) State and prove graph theory's first theorem.
- (2) Prove that a simple graph with n vertices and k component can have at (n-k)(n-k+1)/2 edges.
- (3) Prove that $k_{3,3}$ is non-planner graph.
- (4) Define Adjacency matrix and state its properties.
- (5) Define: Tree and Spanning tree.
- (6) Prove that a graph with atleast one edge is 2-chromatic if and only if it has no circuits of odd length.

- (c) Attempt any two:
 - (1) Explain Konigsberg bridge problem and the solution given by Euler.
 - (2) State and prove necessary and sufficient condition for a graph to be disconnected.
 - (3) Define cut-set vector and in usual notation prove that $(w_s, \oplus, ')$ is a subspace of W_G over field $GF_2 = \{0, 1\}.$
 - (4) Prove that a vertex V in a connected graph G is a cut-vertex if and only if there exist two vertices x and y in G such that every path between x and y passes through V.
 - (5) Define: Minimal Decyclization.
 For the following graph G, find minimal decyclization.

- 3 (a) Attempt any three:
 - (1) Expand e^2 by Taylor's series about z=1.
 - (2) Show that x+y=2 transform into the parabola $y^2 = -8(v-2)$ under the transformation $w=z^2$.
 - (3) Prove that when $z \neq 0$

$$\frac{\sin\left(z^2\right)}{z^4} = \frac{1}{z^2} - \frac{z^2}{3!} + \frac{z^6}{5!} - \frac{z^{10}}{7!} + \dots$$

6

10

- (4) Find residue and pole of order of the function $\frac{\sinh z}{z^4}.$
- (5) Define: Mobius transformation.
- (6) Define: Isolated singular point. Find isolated singular point of the function $\frac{z+1}{z^3(z^2+1)}$.
- (b) Attempt any three:

9

(1) Expand $\sinh z$ in power of $z - \pi i$.

Prove that $\lim_{z \to \pi i} \frac{\sinh z}{z - \pi i} = -1$.

- (2) Expand $f(z) = \frac{z}{(z-1)(z-3)}$ into Laurent's series for 0 < |z-1| < 2.
- (3) Prove that the transformation $w = 2z + z^2$ maps the unit circle |z| = 1 of z-plane into a cardiod in w-plane.
- (4) Find the value of integral $\int_{c} \frac{dz}{z^{3}(z+4)}$ where c:|z|=2.
- (5) Show that the composition of two bilinear maps is again a bilinear map.
- (6) Prove that $\underset{z=i}{\text{Res}} \frac{z^{1/2}}{\left(z^2+1\right)^2} = \frac{1-i}{8\sqrt{2}} \text{ where } |z| > 0$

 $0 < arg z < 2\pi$.

(c) Attempt any two:

10

- (1) State and prove Taylor's infinite series for an analytic function.
- (2) Prove that the transformation $(w+1)^2 = \frac{4}{z}$ transform the unit circle of w-plane into the parabola of z-plane.
- (3) State and prove Cauchy's residue theorem.
- (4) Prove by using Cauchy residue theorem

$$\int_{0}^{2\pi} \frac{d\theta}{1 + K \sin \theta} = \frac{2\pi}{\sqrt{1 - K^2}} \text{ where } K^2 > 1$$

(5) Prove by using Cauchy residue theorem

$$\int_{0}^{\infty} \frac{x^2 dx}{\left(x^2 + 4\right)\left(x^2 + 4\right)^2} = \frac{\pi}{200}.$$